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Abstract

Pricing carbon emissions increases firms’ incentives to develop innovations aimed at
reducing their productions’ carbon emission intensities. This paper incorporates this
mechanism in a dynamic discrete choice model of firms’ innovation decisions while
differentiating between emission-reducing and non-emission-reducing innovations. I
apply the model to the European Union’s Emission Trading System and estimate its
parameters using administrative carbon emission data and patent information for a
large set of German manufacturing firms between 2008-2017. I find that emission-
reducing innovations decrease a firm’s carbon emission intensity on average by about
13.7% while simultaneously decreasing its productivity by 1.5%. In contrast, non-
emission-reducing innovations increase productivity by 2.2%. Furthermore, startup
costs of emission-reducing innovations are lower than those of non-emission-reducing
innovations. However, the costs of maintaining emission-reducing innovation activities
are substantially higher than maintaining the development of non-emission-reducing
innovation. Simulating counterfactual emission price changes substantially impacts
emission-reducing innovation activity while non-emission-reducing innovations stays
stable.
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1 Introduction

Environmental regulations combating global climate change are a top priority of policy-
makers and will likely remain so for the next decades. The European Union implemented
with the Emission Trading System (EU-ETS) one of the most prominent environmental
regulations in recent years. It represents the first and one of the largest carbon mar-
ket programs worldwide, with a coverage of about 1.3 billion tons of carbon emissions1.
Introduced in 2005, it aims at decreasing the EU’s carbon emissions by at least 55% com-
pared to 1990 by 2030 as an intermediate goal and achieving net-zero carbon emissions
by 2050. Two competing arguments are most prevalent when implementing policies and
regulations to protect the environment. Critiques argue that, at least in the short term,
economic agents bear a new cost through the regulation by being penalized with, e.g.,
fines for behavior negatively impacting the environment and being forced to costly adjust
their processes to comply with the regulations. This might negatively affect the regulated
economy by increasing consumer prices and reducing firm competitiveness and economic
growth, especially in an international context. However, Porter first argued in 1991 that
such regulations increase incentives for firms to invest in solutions reducing the penalized
behavior, such as innovations that decrease the environmental impact of firms’ production
processes and products. Porter and Linde (1995) continue to argue in the strong version
of their hypothesis that these innovations do not just have the potential to decrease envi-
ronmental harm while lowering a firm’s compliance costs but increase the productivity of
innovating firms, at least compensating for the induced short-term cost.

Despite the EU-ETS’s importance and the fact that Porter’s hypothesis played a strong
role in its implementation (see European Commission (2007, 2011)), comprehensive empir-
ical evidence of its innovation-inducing and productivity-enhancing effects remains scarce.
Existing studies in the context of the EU-ETS either only address parts of the Porter
Hypothesis, solely focusing on its impact on innovations or productivity, or leave out
essential mechanisms such as the emission price itself. However, when evaluating and de-
signing efficient and cost-effective tools for carbon emission reductions, it is essential for
both economists and policymakers to understand and quantify all key mechanisms through
which emission trading systems like the EU-ETS impact firm performance and innovation
activity.

This paper aims to fill this gap by analyzing how the EU-ETS influences the innovation
activities of regulated firms and how these innovation activities affect their carbon emission
intensity and productivity. To achieve this, I develop a structural dynamic programming
model that describes how the EU-ETS impacts the innovation choices of regulated firms.
I explicitly model a firm’s innovation decisions while differentiating between technologi-
cal innovations reducing carbon emissions and non-carbon emission-reducing technological
innovations to be able to analyze not just an impact on emission-reducing technology de-
velopment but also a potential substitution between both technology types. I estimate the

1Source: European Transfer Log, Own Calculations.

1



short-run impact of both innovation types on developing firms’ carbon emission intensity
and productivity using detailed information on German firms’. Furthermore, I estimate
each technology type’s development costs and long-run benefits. Using these estimates, the
model allows me to evaluate how different carbon prices affect innovation activities of both
types and how they impact the total carbon emissions of regulated firms by simulating
counterfactual situations.

I estimate the model’s parameters using a combination of three data sources. First,
I obtain yearly carbon emissions and allowance allocations for each firm in the EU-ETS
from a publicly available administrative data set. Second, I merge this data financial and
balance sheet information of German firms from Bureau van Dijk’s Orbis database. Finally,
I retrieve and merge information on firms’ innovation activities from patent application
data provided by PATSTAT, a worldwide patent database. In total, 1,336 German firms
regulated under the EU-ETS are present in all three data sets, which represents coverage
of over 93%.

The results show that emission-reducing innovations decrease carbon emissions on av-
erage by about 13.7% while simultaneously decreasing the firm’s productivity by 1.5%.
Therefore, firms would not develop these innovations if their carbon emissions were not
priced in through the EU-ETS, as the entire benefits of the innovations stem from reduc-
ing their emission intensity while reducing their productivity. This contrasts the strong
version of Porter’s hypothesis. Non-emission-reducing innovations increase productivity
by 2.2% on average. Development costs for both types of innovations differ substantially.
Innovation cost distributions for firms starting to innovate have substantially higher av-
erages than those for experienced firms. Moreover, the innovation cost distribution for
firms starting to develop non-emission-reducing innovations has a substantially lower aver-
age than for emission-reducing innovations. However, the innovation cost distribution for
continuing to develop emission-reducing innovations has a lower average than its counter-
part for non-emission-reducing innovations. Simulating an emission price of 101eincreases
average emission-reducing innovation activity in the sample by about 8.78% while leaving
non-emission-reducing innovation decisions stable.

This paper contributes to at least three strands of literature. First, it adds to the lit-
erature examining the impact of environmental regulation on firm behavior (Becker and
Henderson 2000; Martin et al. 2014; Fowlie et al. 2016) by not just focusing on the impact
of introducing a regulation on the target quantities such as emission levels but instead
building a comprehensive framework explicitly incorporating the impact on firms’ inno-
vation behavior which dynamically affects target quantities. Second, I contribute to the
literature evaluating the impact of the EU-ETS on the targeted emission levels and other
firm outcomes (Martin et al. 2016; Colmer et al. 2022; Calel and Dechezleprêtre 2016).
Most of the studies in this literature solely focus on the immediate, direct impact of the
EU-ETS disregarding any intertemporal dynamics caused by firms’ innovation activities,
or do not incorporate the impact of the carbon emission price itself. In contrast, I explic-
itly incorporate the carbon price in my model through which the EU-ETS can incentivize
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firms to develop emission-reducing innovations, which in turn dynamically affect the firm’s
emission intensity and productivity. This methodology allows me to analyze multiple out-
comes in one framework and to simulate the impact of emission price changes on firms’
direction of innovation, affecting the effectiveness of the EU-ETS. Third, I extend the liter-
ature on structural modeling of firm innovation behavior on a microeconomic level, drawing
on recent work from Aw et al. (2011); Peters et al. (2017); Maican et al. (2022); Peters
et al. (2022), and Peters and Trunschke (2022) by building a model explicitly tailored
to incorporate an environmental policy focusing on fostering emission reductions through
technological change. This model allows firms to make two independent innovation deci-
sions with separate benefits and development costs while incorporating an environmental
regulation that incentivizes the development of one innovation type.

Section 2 of this paper gives an overview of the EU-ETS. Section 3 outlines the model,
and 4 explains my approach to estimate the model’s parameters. Section 5 presents the data
used in the estimation and 6 presents the results. I conduct a counterfactual simulation of
an emission price increase in 7 and the 8th and final section concludes.

2 European Union’s Emission Trading System and the Econ-
omy

In an effort to comply with the Kyoto Protocol, the European Union introduced the Eu-
ropean Union Emission Trading System (EU-ETS) in 2005. It implements an EU-wide
market-based mechanism aimed at reducing carbon emissions in the European Economy.
The EU-ETS covered about 11,000 industrial installations from 7,804 companies in 2020.
The number of regulated companies increased over time as new sectors were added to the
EU-ETS in each new phase. This represents about 40% of the EU’s total carbon emis-
sions (≈ 1.3 billion tons in 2020)2. It was the first major carbon market worldwide and is
currently the second-largest worldwide in terms of regulated yearly carbon emissions3.

The EU has chosen a cap-and-trade approach, in which a total amount of carbon emis-
sion allowances is allocated to the participating countries each year. One allowance gives
the holder the right to emit one ton of CO2 equivalents. The cap is reduced each year
by a predefined reduction factor which was at 1.74% in phase 3 and 2.2% in the fourth
phase. Allowances are distributed to all regulated installations either for free or in country-
wide auctions and 1,571,583,007 total allowances were initially issued in 2021. EU-ETS-
regulated Firms emitting less than their initially allocated allowances can then sell their
surplus via carbon allowance exchanges to firms emitting more than their initial allowances
permit. At the end of each year, firms need to provide at least as many allowances as tons
of carbon emissions emitted. For each missing allowance, a firm had to pay a penalty of

2Source: European Transfer Log, Own Calculations. The EU-ETS does not cover relatively small
industrial installations and only incorporates specified sectors.

3The only larger carbon trading market is currently the carbon trading system in China introduced in
2021.
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Figure 1: Carbon Price over Time
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Notes: The figure shows the daily average of the continuous settlement price of emission allowance futures
(EUA) traded over the Intercontinental Exchange (ICE).

40e in phase one and 100e since the second phase while having to submit the missing
allowances in the following year (Council of European Union 2003).

First implemented in 2005 with a three-year trial phase, the EU-ETS entered its fourth
phase at the beginning of 2021. All emission allowances were allocated free of charge to
the regulated installations during the first period. At the beginning of the second phase in
2008, the EU revised the EU-ETS, corrected an oversupply of emission allowances during
the first phase, and began to gradually phase out free allowance allocation, replacing it
with allowance auctions. The aviation sector was included as well, and Norway, Iceland,
and Lichtenstein joined the EU-ETS. In the third phase, which started in 2013, the EU
replaced national carbon caps with an EU-wide one and further restricted the free allocation
of allowances.

Figure 1 below plots the price of a carbon emission allowance since the introduction of
the EU-ETS. The price of allowances traded over allowance exchanges started in 2005 at
about 5e but quickly rose to 20-30e over the next months, where it remained until the
beginning of 2006. When it was announced that verified emissions in 2005 were lower than
the total number of allowances, the price suddenly dropped to about 15e before slowly
declining towards zero. After correcting the allowance allocation in 2008, the initial price
of 20e steadily declined until 2013 to about 5e. Since then, the price has increased first
slowly before strongly increasing from 2017 onwards to its current level of about 65e.

The way the emission trading system is designed it exhibits incentives for firms to reduce
their emissions no matter their current emission levels. This is because the marginal benefit
of avoiding emitting a ton of CO2 does not depend on the the firm’s emission level but on
the allowance price as it can sell every unused allowance on the secondary market. Even if

4



a firm emits less tons of CO2 than allowances it received in the beginning of the year it can
still profit from reducing its emissions further and sell the additional allowances. In line
with this more than half of observations in the sample who innovate in emission-reducing
technologies had excess allowances in the in the years leading to their patent application and
the correlation between having excess allocations and environmental innovation activity is
significantly positive.

3 Model

This paper aims to answer the question of how the EU-ETS affects firms’ incentive to
innovate, their emission intensity development, and productivity evolution. To answer this
question, I develop a dynamic discrete choice model that includes all relevant mechanisms
through which the EU-ETS affects firms’ innovation activities. The primary idea is that
pricing a firm’s carbon emissions internalizes negative externalities to the extent that firms
must consider the cost of their carbon emissions in their profit maximization decision while
developing emission-reducing innovations allows them to improve their emission intensity in
subsequent periods. The model consists mainly of two parts - the static profit maximization
decision and the future-oriented innovation development decisions.

In the first part, firms make their production decisions given their current level of
revenue productivity, carbon emission intensity, and carbon emission price. I build this part
on a production function framework with carbon emissions as a by-product of production
caused by a subset of production inputs. If the emitted carbon is not priced, firms would
not include it in their profit maximization (or cost minimization) decision. However, if
emitting carbon is costly, firms include these additional costs in their production decision.
Fernández et al. (2002), Førsund (2009), Kumbhakar and Tsionas (2016), and Murty and
Russell (2020) propose this multi-equation setup because it possesses acceptable theoretical
properties as opposed to the commonly applied approach of modeling pollution as an input
or output of a single production function4.

In the second part, I follow previous work from Aw et al. (2011), Peters et al. (2017),
and Doraszelski and Jaumandreu (2013) and model both revenue productivity and emission
intensity to develop endogenously, affected by the firms’ innovation development decisions.
However, I extend these models by allowing firms to choose to develop either emission-
reducing innovations or non-emission-reducing innovations, which differ in the way they
influence the firm’s future state. Both types of innovations can impact the developing
firm’s future revenue productivity. Emission-reducing innovations additionally influence
the firm’s subsequent period’s emission intensity. Furthermore, both of these effects can

4Murty and Russell (2020) argue that treating emissions as an additional regular input in a production
function for only the desired output, such as in the early work of Baumol (1988), leads to unrealistic impli-
cations. For example, holding output fixed, increasing any (emission-generating) input leads to decreased
emissions. Modeling emissions as an output in a production function would lead to similarly problematic
implications. E.g., under standard free disposability assumptions, firms would be able to decrease the level
of their emission output without decreasing the desired output or inputs, as Murty and Russell (2020)
argue.
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carry over to some extent into future periods because the development processes of both
variables are allowed to depend on previous periods’ values. The data does not include
innovation costs of either technology. I, therefore, model them as random variables similar
to Aw et al. (2011) or Peters et al. (2017). Combining all model parts, I can further define
simple decision rules for a firm’s innovation development decisions, which allow me to (i)
calculate the long-run benefits of each innovation type and (ii) simulate firm behavior in
counterfactual situations such as increases in the carbon-emission price.

Static Part

This part describes the static profit maximization decision of the firm under a technology
that generates carbon emissions as a by-product. It forms the grounds for the dynamic
innovation decisions in the following section. The basis of this model is the production
function with which firm i produces an output qit in period t

qit = F (XN
it , X

E
it , ψit, β). (1)

Within their technological constraints, firms can choose to use non-emission-producing
inputs XN

it such as capital or labor, or inputs that generate carbon emissions XE
it such as

material or fuel. The parameter vector β contains both output and substitution elasticities
of their production technology. Production efficiency ψit describes how efficiently the firm
uses its production inputs and is only observed by the firm before making its production
decision but not by the econometrician. The amount of Carbon emitted as a by-product
of the production process is a function of Carbon emission-generating inputs XE

it and the
firm’s emission intensity αit

Eit = G(XE
it , αit). (2)

This directly links the amount of the carbon-emitting inputs chosen by the firm and emis-
sions generated as a by-product of production. The higher a firm’s emission intensity, the
more Carbon it emits during production when using emission-generating production in-
puts. Relating the amount of emissions to the production technology’s emission-generating
inputs allows to solely capture the direct link between the inputs emitting Carbon in the
production process. If instead emissions would be a function of production output, the
firm would be able to affect its emission intensity by increasing non-emission-generating
inputs which, ceteris paribus, increase output without increasing the amount of emissions.
Then estimated effects on the firm’s emission intensity would not only capture techno-
logical advancements but also substitution effects within the same production technology.
Furthermore, unlike the commonly employed approach of including emissions as an input
in the production function, the approach in this paper does not allow firms to choose an
emission level similar to a conventional input. As explained in Førsund (2009), the input
approach generates a negative connection between the amount of output produced and
emissions and allows firms to produce output without emitting any carbon. Modeling Car-
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bon emissions in a separate function depending on emission-generating inputs, however,
implies that firms emit carbon as long as the emission-generating input is used in produc-
tion. It also creates a positive relation between the amount of Carbon emitted and the
level of output as Murty and Russell (2020) explain.

I assume firms to be in a monopolistically competitive environment à la Dixit and
Stiglitz (1977) as in Aw et al. (2011) or Peters et al. (2017). This setting provides the
most flexible demand specification without the need to model firms’ strategic interactions.
Consumers’ utility maximization leads to demand for a firm’s output qit to be given by

qit =

(
pit
Pjt

)ηjt Ijt
Pjt

eϕit = Φjtp
ηjt
it e

ϕit , (3)

where pit is the price that firm i asks for its output. Pjt represents a price index of
all product variants in firm i’s market j while Ijt is the size of the market. The price
elasticity of demand in the market ηj , which I assume to be constant over time, explains
how strongly demand reacts to price changes. The demand shock ϕit shifts the demand for
firm i’s product in period t and can be interpreted as the desirability or quality of the firm’s
product. Similar to the production efficiency ψit, it is known to the firm when making the
current period’s decisions while being unobserved to the econometrician. Assuming output
markets to be in equilibrium, I can express a firm’s revenue as

Rit = pit · qit =

(
P

1+ηjt
jt

eϕitIjt

) 1
ηjt

q
1

ηjt

it qit

=

(
P

1+ηjt
jt

eϕitIjt

) 1
ηjt [

F (XN
it , X

E
it , ψit, β)

] 1+ηjt
ηjt

=

(
P

1+ηjt
jt

Ijt

) 1
ηjt [

F (XN
it , X

E
it , ωit, β)

] 1+ηjt
ηjt .

(4)

I follow Peters et al. (2017) and combine both unobserved production efficiency ψit and
the unobserved demand shock ϕit to revenue productivity ωit because I cannot disentangle
these two quantities with the data at hand in the empirical approach. It also resembles
most closely the commonly estimated quantities in empirical applications of production
function estimations in the literature using revenue data.5

Using all parts from above, I can express a firms profit π as

πit = pitqit − c(XN
it , X

E
it , w

N
it , w

E
it , p

E
it , αit)

= Rit − wN
itX

N
it − wE

itX
E
it − pEitEit,

(5)

with wN
it and wE

it representing prices for non-emission-generating inputs and emission gen-
erating inputs, respectively. Regulated firms have a strictly positive Carbon emission price
pEit . If firms’ emissions are not regulated, the Carbon emission price would essentially equal

5See De Ridder et al. (2022) for a discussion about estimating production functions with revenue data.
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zero, and the amount of Carbon emissions they generate as a by-product of production
would drop out of the profit function. However, the larger the Carbon emission price is,
the larger the trade-off between producing the desired output with emission-generating
production inputs and paying the cost of emitted Carbon.

Dynamic Part

This part focuses on the development processes of both revenue productivity ωit and emis-
sion intensity αit and the dynamic innovation decisions using the above-developed static
profit maximization of the firm. Firm productivity evolves dynamically with some amount
of persistency. However, differently than in a substantial part of the empirical production
function literature, it can be influenced by the firm’s decisions to develop emission-reducing
innovations iEit−1 or non-emission-reducing innovations iNit−1. Therefore,

ωit = Υω(ωit−1, i
E
it−1, i

N
it−1). (6)

Even though firms primarily develop emission-reducing innovations to reduce their carbon
emission intensity, they are also likely to impact a firm’s general productivity. However,
the sign of this impact is not clear ex-ante. Porter (1991) argues innovations incentivized
by environmental regulations can also increase productivity because they represent a new
technology that might make the firm’s production more efficient or increase its products’
quality. Even in the case of a positive productivity impact of emission-reducing innovations,
firms might not necessarily develop these innovations without environmental regulations
since they either face budget or capacity constraints in dimensions relevant to innovation
decisions or do not have perfect information about every possible technological direction.
In contrast, when environmental regulations are introduced, firms will develop emissions-
reducing innovations even if they have a negative effect on productivity, as long as the
increase in profits from the reduction in emission costs is larger than the profit loss due to
reduced productivity.

A firm’s emission intensity αit develops in a similar fashion as productivity. It evolves
over time as a persistent process. The firm can influence this evolution by developing
emission-reducing innovations, however, not by developing non-emission-reducing innova-
tions, i.e.

αit = Υα(αit−1, i
E
it−1). (7)

Any reduction of emission levels at constant output when non-emission-reducing innova-
tions were developed, therefore, does not come from a reduction of the emission intensity
but only stems indirectly from increased productivity.

Developing innovations are costly, and a firm’s decision to engage in any possible in-
novation development activity not only depends on the expected potential benefits of the
innovation but also on their respective development costs. These costs are likely to differ
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substantially between different technologies. For example, Peters and Trunschke (2022)
show this for different technology types. I follow this idea and allow development costs
in this model to differ between emission-reducing and non-emission-reducing innovations.
Since I do not observe the innovation costs of any of the two innovation types (C E

it , C
N
it )

in my data, I model them as random variables drawn from distributions ΛE and ΛN with
parameters ΘE and ΘN , respectively, i.e.

C E
it ∼ ΛE(ΘE ; iEit−1),

C N
it ∼ ΛN (ΘN ; iNit−1).

(8)

Second, innovation development costs do not just differ between technology types but
also depend on the experience of the developer. If a firm is a first-time developer in the
respective technology, its development costs are likely to be substantially higher than for
experienced developers. This difference arises not just because of the fixed costs of building
up an innovation department but also because of the inexperience and inefficiencies of the
firm in developing the technology. The model, therefore, allows the moments of the inno-
vation development cost distributions to vary for firms starting or continuing developing
innovations.

Combining all pieces of the model, the firm’s intertemporal maximization problem can
then be expressed in the following Bellman equation

Vit = π∗(sit) + δ max
iE,iN∈{0,1}

E
[
V (sit+1, i

E
it , i

N
it )− CE

it i
E
it − CN

it i
N
it

]
= π∗(sit) + δ max

iE,iN∈{0,1}
E

 ∫
CE

∫
CN

( [
V (sit+1|ωit, αit; i

E
it , i

N
it )
]
− CE

it i
E
it − CN

it i
N
it

)
dCNdCE

 . (9)

The first part is the contemporary profit after the firm made its production decision to
maximize its profit given its current state variables sit = (ωit, αit, kit, i

E
it−1, i

N
it−1). The

second part contains the maximum of the firm’s expected future value, which depends on
its current innovation choices (iEit , i

N
it ) and is discounted by the discount factor δ, net the

associated development costs if the firm decides to develop any of the innovation types.
Because the innovation costs are random variables, their expectation can be expressed as
the integral over all their possible values. However, the expected value of the firm itself
depends on the future values of revenue productivity ωit and emission intensity αit which
are influenced by the firm’s innovation decisions. I assume the firm to make innovation
decisions for both types sequentially. First, firms make the emission-reducing innovation
decision iEit and afterwards the non-emission-reducing innovation decision iNit in the same
period. Equation (9) can then be expressed in terms of the firm’s emission-reducing innova-
tion decision at the beginning of the period after observing its emission-reducing innovation
development costs as

E
[
V (sit+1|ωit, αit; i

E
it , i

N
it )
]
=

∫
ω

∫
α

{
V (sit+1|ωit, αit; i

E
it = 1)− CE

it ,

V (sit+1|ωit, αit; i
E
it = 0)

}
dF (αit+1|αit, i

E
it)dG(ωit+1|ωit, i

N
it , i

E
it) (10)
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However, the future value in the interim value function in (10) still depends on the second
choice the firm makes in the same period and can, therefore, be rewritten in terms of the
non-emission-reducing innovation choice after the firm observed CN

it as

V (sit+1|ωit, αit; i
E
it) =

{
V (sit+1|ωit, αit; i

N
it = 1)− CN

it ,

V (sit+1|ωit, αit; i
N
it = 0)

}
(11)

Firms choose to invest in either innovation if the benefits of innovating in the specific
innvoation type is larger than the corresponding innovation cost. The marginal benefit of
each technology is the discounted difference between the expected future value of the firm
if it decides to innovate in the respective technology and if it does not

∆EδE[V (sit+1)] = E[V (sit+1|ωit, αit; i
E
it = 1)]− E[V (sit+1|ωit, αit; i

E
it = 0)],

∆NδE[V (sit+1)] = E[V (sit+1|ωit, αit; i
N
it = 1)]− E[V (sit+1|ωit, αit; i

N
it = 0)].

(12)

Without knowing the firm’s contemporary innovation costs, the ex-ante conditional in-
novation choice probabilities for emission-reducing and non-emission-reducing innovations
can, therefore, be expressed as the probability that the marginal benefit of developing the
innovation is larger than its innovation costs.

P (iEit = 1|sit) = P
(
∆EδE[V (sit+1)] ≥ CE

it

)
and

P (iNit = 1|sit) = P
(
∆NδE[V (sit+1)] ≥ CN

it

)
.

(13)

4 Empirical Approach

The approach to estimate all primitives of the model consists mainly of two parts. First, I
estimate all parameters influencing the firm’s short-run profit maximization decision and
the parameters governing the development processes of both revenue productivity and
emission intensity. I then use these estimates to estimate all (expected) value functions
and the parameters of the development cost distributions in the second part.

Static Part

The estimation of all short-run parameters has three steps. Step one identifies the param-
eters of the emission generation function and the emission intensity development process.
Step two then estimates the demand elasticities for each industry, followed by the simulta-
neous estimation of the revenue function and the productivity development process in the
third step. A key challenge in this last step is identifying unobserved productivity and its
development process.

I begin with calculating the firm’s emission intensity αit and estimating the parameters
of the emission generation function (2) and the parameters of the emission intensity devel-
opment process (7). Assuming material to be the only emission-generating input and its
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relationship with emissions to be linear. Therefore, the emission generating function (2)
takes the form

Eit =Mite
αit . (14)

Rearranging terms leads to a simple expression for emission intensity

αit = ln

(
Eit

Mit

)
. (15)

Assuming a firm’s emission intensity to develop following a controlled Markov process that
is linear in the previous period’s emission intensity and the emission-reducing innovation
decision. Adding an i.i.d. zero-mean error term κit leads to the estimation equation, which
I can estimate using OLS

αit = γ0 + γ1αit−1 + γ2i
E
it−1 + κit. (16)

Following insights from Peters et al. (2017), who show that profit-maximizing firms in a
monopolistic competition environment set their output price as pit =

(
ηjt

1+ηjt

)
·MCit, with

MCit representing marginal costs, short-run profits can be expressed as

πit = Rit −MCitqit = − 1

ηjt
Rit. (17)

Rearranging terms leads to

MCitqit
Rit

=
wN
itX

N
it − wE

itX
E
it − pEitEit

Rit
= 1 +

1

ηjt
. (18)

I can, therefore, regress the variable cost-to-revenue ratio onto a constant for each industry
separately using OLS, which allows me to back out demand elasticity estimates η̂jt.

The remaining step is the estimation of the revenue function- and the productivity
development process parameters. For simplicity, I assume the firm’s production technology
to be of Cobb-Douglas type that is Leontief in material input. However, the setup can
easily allow for other, more general, production functions

F (Kit, Lit, ωit;β) = qit = Kβk
it L

βl
it e

ωit+ϵit , (19)

Including (19) in the revenue equation (4) and taking the natural logarithm leads to the
basic form of the estimation equation

rit =

(
1

ηjt

)
λjt +

(
1 + ηjt
ηjt

)
(βkkit + βllit + ωit + ϵit) , (20)

where lower-case variables represent the natural logarithms of their respective capital-letter
counterparts. I include the estimated demand elasticities as data and a set of industry-
and time dummies λjt which subsumes all industry-level variables and variation over time.
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As in most applications, I do not observe revenue productivity in the data. Trying to
estimate the parameters of the revenue function (20) without accounting for ωit leads to a
substantial, well-known simultaneity bias as explained in Olley and Pakes (1996). Following
Ackerberg et al. (2015), I employ a two-step control function approach, proxying for ωit

in the first step, which allows me to find an expression that includes ωit. The second step
then identifies all output elasticities. I can express material demand as a function of all
other production inputs, revenue productivity, and emission intensity6

mit = hm(kit, lit, ωit, αit). (21)

Assuming that ωit is the only unobserved factor in the material demand equation, I can
invert (21) such that productivity becomes a function of only observed variables

ωit = h−1
m (kit, lit,mit, αit), (22)

which I substitute in equation (20) for ωit

rit =

(
1

ηjt

)
λjt +

(
1 + ηjt
ηjt

)(
βkkit + βllit + h−1(kit, lit, ωit, αit) + ϵit

)
. (23)

Instead of using my model’s structure to find a closed form of this equation as in Peters
et al. (2017), I follow Ackerberg et al. (2015) and approximate (23) using a 4th order Taylor
approximation and estimate its parameters using OLS. As explained above, this step does
not identify any of the structural parameters but allows me to retrieve an estimate q̂it
that includes the unobserved productivity term ωit but not the i.i.d error ϵ. I can use this
approximation to identify all output elasticities and the parameters of the productivity
development process in the second stage. Assuming the productivity development process
to be cubic in past productivity and linear in the innovation decisions, as common in the
literature (Aw et al. 2011)

ωit = ρ1ωit−1 + ρ2ω
2
it−1 + ρ3ω

3
it−1 + ρ4i

E
it−1 + ρ5i

N
it−1 + ξit. (24)

ξit represents a contemporary i.i.d. zero mean productivity shock. Based on this, I can
formulate all necessary moments to estimate all parameters using an efficient two-step
GMM estimator as proposed in Hayashi (2000)



kit

lit−1

ωit−1

ω2
it−1

ω3
it−1

iEit−1

iNit−1


⊗ ξit


= 0. (25)

6For unregulated firms, emission intensity would drop out of the equation because firms would not
account for it in their production decisions.
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This formulation assumes that all investments into contemporary capital kit were already
made in the previous period, ruling out any dependence of the capital stock in the con-
temporary productivity shock. Contrary to this, I assume that firms can at least partially
decide on their labor input in the contemporary period and, therefore, use lagged labor
input to define the moment.

Dynamic Part

The only primitives of the model that are left to estimate are the innovation development
cost distribution parameters θE , θN , and the (expected) value functions. I estimate these
quantities using a nested fixed-point algorithm (NFXP) proposed by Rust (1987), which
is based on a Likelihood function consisting of the conditional choice probabilities for each
innovation type. The assumed sequential innovation decision order allows me to express
the joint conditional choice probability of both types of innovations as the multiplication
of each separate probability. However, note that the conditional choice probability of
emission-reducing innovations is conditional on the contemporary non-emission-reducing
innovation decision, while its counterpart for non-emission-reduing innovations is not.

L(θ|iEit , iNit , sit) =
∏
i

∏
t

P (iEit , i
N
it |sit, θ)

=
∏
i

∏
t

P (iEit |iNit , sit, θ)P (iNit |sit, θ)
(26)

These choice probabilities of both innovation types represent the probability that the dis-
counted expected marginal benefit of choosing to innovate exceeds the associated innova-
tion costs as shown in (13). These probabilities have analytical expressions when assuming
both innovation costs to be drawn from exponential distributions,

P
(
iEit |sit

)
= 1− exp

(
δV
(
iEit = 1|sit

)
− δV

(
iEit = 0|sit

)
θE

)
,

P
(
iNit |sit

)
= 1− exp

(
δV
(
iNit = 1|sit

)
− δV

(
iNit = 0|sit

)
θN

)
,

(27)

with θE and θN describing the means of the respective exponential distributions. Appendix
A.2 derives the likelihood function in detail and provides some technical details of the
computational procedure. Calculating these probabilities rely on solving the system of
equations defined by the (expected) value functions (9), (10), and (11), over a state space
grid of 100 equally spaced points between the minimum and maximum values for revenue
productivity ωit, 100 equally spaced points for emission intensity αit, and the observed
combinations of material, employees, capital stock, and industry classification. I match the
solutions computed on the state space grid to observations in my dataset by interpolating
value functions and expected value functions between the grid points with cubic B-splines.
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5 Data

The analysis in the empirical part of the paper uses information from three different data
sets. I take yearly information on German firms from the Orbis database, which I merge
with data on carbon emissions from the European Carbon Transfer Log (EUTL). Patent
data from the worldwide patent database - PATSTAT provides information on each firm’s
innovation behavior. The analysis concentrates on firms in manufacturing sectors mainly
because (i) the EUTL focuses on these sectors, and therefore more than 95% of emissions
in my sample come from firms in manufacturing, and (ii) it focuses on technical innovations
using patenting information, which is predominantly done in manufacturing, as well.

Firm Data

The Orbis database from Bureau van Dijk provides financial indicators and balance sheet
information from firms worldwide. It is, apart from administrative data, one of the most
renowned and complete source of firm information in Germany. I take information on
production inputs such as material, number and cost of employees, and fixed capital,
turnover, and industry classifications from firms in manufacturing industries. This gives
me a total of 9,145,934 observations from 1,270,101 firms from all industries until 2020.
However, the sample restrictions described below and missing information in important
variables reduce the total number of observations substantially.

Carbon Emission Data

I obtain firms’ carbon emission data from the European Transfer Log (EUTL), which
constitutes a publically available dataset containing each industrial installation regulated
under the EU-ETS 7. This administrative data provides names and addresses of all instal-
lations and the companies who own them. It also contains records on yearly emissions,
initially allocated allowances, and all allowance transactions between installations for each
installation since the second EU-ETS phase in 2007. In total, the dataset contains emis-
sion information for 25,205 observations from 2,794 industrial installations in Germany. I
aggregate the data on the firm-year level and obtain yearly emission data for 1,336 firms. I
am able to find above 93% of installations from the emission dataset to firms in the Orbis
database using a fuzzy name and address matching algorithm on the installation owners’
addresses and names8. Appendix A.1 provides further details on the matching quality
and process. Table 1 shows that total emissions in the sample are highly concentrated in

7The dataset is freely available under https://climate.ec.europa.eu/eu-action/eu-emissions-trading-
system-eu-ets/union-registry_en

8The algorithm I use compares the similarity of strings from each candidate, weighting words by their
frequency. This essentially gives low weights to fill words and legal forms while increasing the relative
importance of informative words. After matching these weighted strings, I manually validate each potential
match. For all firms in the emission data that were not properly matched, I conduct a manual search of
the Orbis online database. See https://github.com/ThorstenDoherr/searchengine and Doherr (2023) for
further information on the fuzzy name matching algorithm.
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a small number of sectors. The vast majority of emissions originate from manufacturing
industries, and almost 70% come solely from mining, oil processing, and energy-supplying
sectors.

Table 1: Emissions per Industry

Industry Share Description
1 .007 Food, beverages, tobacco
2 .000 Textiles, clothing, leather
3 .013 Wood, paper
4 .052 Chemicals, pharmaceuticals
5 .001 Rubber, plastics
6 .054 Glass, ceramics, concrete
7 .120 Metals, metal products
8 .000 Electronics, med. instruments
9 .008 Machinery
10 .008 Automotive, other vehicles
11 .000 Furniture, other consumer products
12 .690 Mining, oil processing, energy supply

Total .953

Notes: The table presents each industry’s share on total
emissions over all periods in the sample. Service industries
are omitted.

Innovation Data

I use information on firms’ patenting activities as an innovation indicator. Though it is
well known that not all innovation activities are patented, it represents the most often
used indicator for innovation. Especially non-technical, less valuable, and easily hidable
innovations are less likely to be patented. However, the analysis focuses on technical inno-
vations that are likely to be covered reasonably well by patent information. An advantage
of using patent data is that information on the universe of all patents is accessible in its
entirety and that the novelty of the invention is externally validated by patent examiners
and does not solely rely on self-reported information. Another advantage is that patents
are accurately located in the technology space via technology classifications. I follow Calel
and Dechezleprêtre (2016) and use this property to classify patents into carbon-reducing
innovations and non-carbon-reducing innovations using the "YO2" CPC class (see An-
gelucci et al. (2018)) of patents for climate change mitigation. This class was created by
the European Patent Office to identify patents aimed at combating climate change which
is largely driven by firms’ carbon emissions. I match firm-year observations from the Orbis
dataset to patent applications using the same fuzzy string-matching approach of names
and addresses from firms in the Orbis sample and patent applications.9

9It is impossible for me to validate all potential matches manually because of the data size. Instead,
only a subset of the results is manually validated and then fed into a machine-learning algorithm for the
validation of the full sample. See Appendix A.1 for more information on the matching procedure.
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Analyzing the transition rates displayed in Table 2 for emission-reducing patent appli-
cations and in Table 3 for non-emission-reducing patent applications between the number
of a firm’s patent applications from one year to the next reveals that most firms transition
between no patent applications and some patent applications. Most firms transition from
having no patent application at all to one or more applications in the next year or the
other way around. Only relatively few firms transition from one patent application to
more than one application in the next year. Therefore, the firm’s discrete decision between
not conducting any innovation project and conducting one seems to be more relevant the
intensive margin. I reflect this in my model by modeling the firm’s innovation decision as
binary.

Table 2: Emission-reducing Patenting Transition Rates

Emission-reducing patent applicationst
0 1 2 3 4 5 >5 Total
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1 0 207,782 703 140 57 14 6 16 208,718
1 776 167 61 29 17 5 10 1,065
2 165 71 39 16 10 8 11 320
3 64 30 29 20 9 5 12 169
4 21 12 9 14 11 7 17 91
5 8 7 5 9 5 2 16 52

>5 25 8 12 16 14 15 210 300

Total 208,841 998 295 161 80 48 292 210,715

Notes: Transition rates are based on the full merged sample. The estimation
sample is smaller due to its focus on manufacturing industries, regulated firms, a
shorter time frame, and missing values in included variables.
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Table 3: Non-mission-reducing Patenting Transition Rates

Non-emission-reducing patent applicationst
0 1 2 3 4 5 >5 Total
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1 0 196,033 2,429 778 250 113 54 50 199,707
1 2,969 866 370 191 107 51 70 4,624
2 915 415 238 149 80 49 120 1,966
3 328 231 136 91 58 48 116 1,008
4 152 122 93 80 68 39 116 670
5 81 57 63 45 48 38 81 413

>5 141 120 139 121 113 116 1577 2,327

Total 200,619 4,240 1,817 927 587 395 2,130 210,715

Notes: Transition rates are based on the full merged sample. The estimation sample is
smaller due to its focus on manufacturing industries, regulated firms, a shorter time frame,
and missing values in included variables.

The summary statistics in table 4 show that the sample focuses mostly on larger firms.
The average firm has about 1,500 employees and receives more than 1.2bn e in annual
revenues. Carbon emission costs vary greatly between firms making a profit from selling
their allowances to firms that pay almost half a billion Euro. On average firms pay 6.4m
e for their carbon emissions, which is on average 6.4% of their annual material costs.
About 9% of firms in the sample have non-emission-reducing patent applications, whereas
about 5% have emission-reducing patent applications. These shares are substantially lower
than survey-based measures of innovation (Rammer et al. 2022). However, patent applica-
tions only represent a subset of valuable, mostly technical innovations, which is the focus
of this paper.

Table 4: Summary Statistics

Variable Model Unit mean med sd min max
Revenues R mio e 1275.48 169.38 6,161.59 0.610 81,782.92

Fixed assets K mio e 758.93 76.56 4,990.26 0.060 110,551.19
Material cost M mio e 787.01 76.81 4,263.57 0.019 54,139.25
Labor cost plL mio e 136.38 20.90 193.10 0.006 10,500.63

Emission costs pEE mio e 6.4 0.005 19.71 -49.198 484.63
Non-emission red. inno iN 0/1 0.09 0 0.28 0 1

Emission red. inno iE 0/1 0.05 0 0.22 0 1

Notes: Emission costs can be negative because they represent net emission costs and firms can
sell their emission allowances if they do not need them.

The grating of patents generally takes several years. I, therefore, use the earliest filing
date of the patent application in the analysis to get as close as possible to the true invention
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Figure 2: Patent Application and Employment
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Notes: Average annual number of employees of a patenting firm up to 5
years before and 10 years after its first patent application.

date when matching patent applications with firm information. Looking at Figures 2-4 de-
picting the development of employment, revenues, and emission intensity10 relative to the
timing of the first (emission-reducing) patent application. The positive relationship of the
first application with employment and revenue are already present in the year of the patent
application while steadily increasing afterwards.11 Similarly, the negative relationship be-
tween the first emission-reducing patent application and a firm’s emission intensity seems
to be directly present in initial year of the application. I additionally regress firms’ employ-
ment, revenues, and emission intensity on a (emission-reducing) patent application dummy
and three of its lags in separate models. The results in Tables A.2-A.4 in Appendix A.3
confirm the visual findings from Figures 2-4 as already the contemporary patent applica-
tion dummy is highly significant. The relationship again seems to carry over to subsequent
periods because the coefficients from lagged patent application often continue to be sig-
nificantly different from zero. This evidence indicates towards an immediate relationship
between patenting and firms’ input and output choices without a strong time-lag. I, there-
fore, assume only a one year lag between the firm’s innovation decisions and the related
patent application and a direct impact of the patent application on emission-intensity and
productivity in the estimation of the model’s parameters.

10Emission intensity is defined as in the later part of the paper as total emissions
material input

.
11Part of the continuously growth might come from subsequent patent applications after the initial one.
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Figure 3: Patent Application and Revenue
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Notes: Average annual revenue of a patenting firm up to 5 years before
and 10 years after its first patent application.

Figure 4: Emission-reducing Patent Application and Emission Intensity
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Notes: Average annual emission intensity of a firm patenting in emission-
reducing technologies up to 5 years before and 10 years after its first patent
application.
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6 Results

I estimate all model parameters in two parts. First, I retrieve all static parameter estimates
that do not involve solving the dynamic programming problem, namely the emission gen-
eration function’s parameters, demand elasticities, revenue function parameters, and the
parameters governing the laws of motion for emission intensities and productivity. Esti-
mating these parameters before solving the dynamic programming problem substantially
reduces the dimensionality of the subsequent estimation and all problems associated with
it. Plugging the resulting estimates into the corresponding functions leaves estimating the
innovation development cost distribution parameters and (expected-) value functions for
the second step.

6.1 Static Part

I begin with estimating the parameters of the emission generation function. The results
in Table 5 confirm that firms can improve their emission intensity through innovation.
By developing emission-reducing innovations, the emission intensity of firms significantly
decreases by 7.9% on average. The large and significant parameters for the lagged emission
intensity show a high degree of persistency of firms’ emission intensity levels over time. I
include year- and industry fixed effects to test the robustness of the results in the second
column. However, including firm fixed effects in the model makes it necessary to use the
GMM estimator proposed by Arellano and Bond (1991). The negative impact of emission-
reducing innovations persists, however, doubling in size, while the degree of persistency of
the emission intensity decreases. The differences of the results in these two models might,
to some degree stem from the reduced sample size in the second column due to missing
values in the lagged variables that the estimator uses as instruments.

Table 5: Emission Generation Function Estimates

Variable OLS Areallano-Bond
αit−1 0.954∗∗∗ 0.349∗∗∗

(0.011) (0.117)
iEit−1 -0.079∗∗ -0.137∗∗

(0.051) (0.064)
cons 0.292∗∗∗ 4.270 ∗∗∗

(0.071) (0.772)
SE(ζ̂) 0.711 1.517
Observations 3,117 2,555

Notes: Dependent variable is αit. Standard Er-
rors are in parentheses below the point estimates.
Significance at the * 10% level, ** 5% level, ***
1% level. Time- and firm dummy variables are
included in the second model but not reported.

Before jointly estimating the parameters of the revenue function and the productiv-
ity development process, I estimate demand elasticities. As described in the empirical
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approach in section 4, rearranging the firm’s profit equation (17) leads to equation (18),
which I can estimate for each industry separately, allowing me to back out demand elas-
ticities. The results in Table 6 show the expected negative sign and are comparable in
size to estimates of similar models with different datasets (Peters et al. 2017; Peters and
Trunschke 2022). The size of the demand elasticity affects how high firms’ markups over
production costs are. This, in turn, affects the marginal benefit of each innovation decision.
The higher the demand elasticity, the smaller the marginal profit a firm receives per unit of
revenue. This especially influences the benefits of increasing its productivity or decreasing
its emission intensity. Using the results in Table 6, equation (5) shows that in my model,
a marginal euro of revenues translates, e.g., for mining and oil processing into 38.3 cents
additional profit while firms in food, beverage, and tobacco production only receive a 26.1
cents additional profit.

Table 6: Demand Estimates

Industry Demand Elasticity (ηj)
1. Food, beverages, tobacco -3.825
2. Textiles, clothing, leather -3.197
3. Wood, paper -3.512
4. Chemicals, pharmaceuticals -3.124
5. Rubber, plastics -3.524
6. Glass, ceramics, concrete -2.903
7. metals, metal products -3.185
8. Electronics, instruments, electrical equipment -3.452
9. Machinery -3.398

10. Automotive, other vehicles -3.618
11. Furniture, other consumer products -3.128
12. Mining, oil processing, energy supply -2.611

Notes: Industry demand elasticity estimates are based on a larger sample as I only require
total variables costs and revenues to be non-missing and also include firms that are observed
only once or with gaps.

Plugging the demand elasticity estimates into the revenue equation (20), I estimate the
revenue elasticities and the productivity development process parameters using material
inputs as a proxy for unobserved productivity ωit in the first stage of the GMM estima-
tor. The results in Table 7 show that the revenue elasticity of capital is with about 0.53
substantially lower than it’s equivalent for labor (0.83). The parameter estimates for the
lagged productivity terms in the productivity development process show a high degree
of persistency. This means that contemporary effects on productivity are carried over to
subsequent periods to a substantial amount. Developing an emission-reducing innovation
decreases productivity in the next period by 1.5% while non-emission-reducing innovations
increase productivity by 2.2%, however, non-significantly.
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Table 7: Revenue Function Estimates

Variable Coef SE
kit 0.525∗∗∗ 0.099
lit 0.826∗∗∗ 0.077
ωit−1 0.919∗∗∗ 0.026
ω2
it−1 0.071∗∗∗ 0.021
ω3
it−1 -0.020∗∗∗ 0.006
iEit−1 -0.015 0.026
iNit−1 0.022 0.029
SE(ξ̂) 0.786
Observations 3104

Notes: Significance at the * 5% level,
** 1% level, *** 0.1% level. Time-
and industry dummy variables are in-
cluded in the first stage of the estima-
tor but not reported.

6.2 Dynamic Part

In the second step, I estimate the parameter of the dynamic model. I use the estimated
static parameters to calculate profits for each firm type on the grid as explained in sec-
tion 4. I then estimate the averages of the development cost distributions of each firm
type while differentiating between unexperienced and experienced innovators respectively.
Similar to previous results in the literature startup costs averages are substantially higher
than continuation cost averages for both technology types. However, they are lower for
emission-reducing innovations than for non-emission-reducing innovations. However, costs
of maintaining innovation activities for emission-reducing innovations are, on average, dou-
ble the costs for non-emission-reducing innovations.

Table 8: Innovation Cost Distribution Averages

Parameter Point Estimate

Startup cost emis. red. inno. (θES) 4,884.543

Maintenance cost emis. red. inno. (θEM ) 672.302

Startup cost non-emis. red. inno. (θNS) 5,656.351

Maintenance cost non-emis. red. inno. (θNM ) 317.057

Observations 3,104

Notes: I calculate the fixed point of the Bellman equation using a grid of 100
points for ω, 100 points for α, 12 industries, 10 points for capital, 10 points
for employees, and 10 points for material input.
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7 Simulating the Impact of the Carbon Price

The main quantity affecting through which the EU-ETS affects firms’ Carbon emission
behavior is the level of the emission price. The higher the price, the more costly it is
for firms to emit Carbon in their production processes. To reduce the burden of the
policy firms can invent emission-reducing technologies and reduce their emission-intensity.
This allows firms, ceteris paribus, to increase their production while keeping emission levels
constant. In the model in Chapter 3, an increase in the price for carbon emissions influences
firm profits by increasing the marginal cost of production. The higher the total cost of
a firm’s emissions, the larger its marginal benefits from decreasing its emission intensity.
Policymakers repeatedly made this argument when arguing in favor of implementing the
EU-ETS; however, up to now, there is little empirical evidence supporting this channel.
A low emission price over most of the implementation period of the EU-ETS also made
it difficult to detect any large-scale impacts. This study circumvents this problem by
modeling firms’ innovation decisions allowing for simulating counterfactual situations with
varying emission prices instead of trying to identify the effect from the data directly.

I, therefore, utilize the estimated model parameters from the previous section and sim-
ulate variations in the emission price between 10 and 200e. Forecasting the Carbon price
development is notoriously difficult, however the simulated range is well within expected
price ranges of the near future of 80-160e per allowance.12 For each price level, I then
simulate firms’ innovation decisions for the next year and present the average emission-
reducing or non-emission-reducing innovator rates in the sample from 100 simulation runs
in Figure 5.

The results show that the emission price affects innovation activity in the sample sub-
stantially. Generally, the higher the emission price, the higher is the rate of emission-
reducing innovators. At a price of 10e only 0.4% of firms would decide to innovate in
emission-reducing technologies. However, at a price of 200e per carbon allowance, almost
13% of firms in the sample would decide to invest in emission-reducing technologies. This
positive relationship between the emission-price and innovation decisions is highly nonlin-
ear. While the emission-reducing innovator rate increases steeply with low emission prices,
the rate of increase declines steadily with higher emission prices. However, the rate of
non-emission-reducing innovators seems to be unaffected by the emission-price. In general,
the model allows for a connection between the emission price and non-emission-reducing
innovations through productivity increases. Non-emission-reducing innovations affect pro-
ductivity positively, decreasing the amount of any input needed to, ceteris paribus, produce
the same amount of output. The fewer emission generating inputs a firm needs in pro-
duction the lower are its emission costs. Therefore, firms should have a higher incentive
to increase productivity through non-emission-reducing innovations when facing higher
emission costs. However, the simulations do not reveal such a connection. This might
be caused by marginal benefits of non-emission-reducing innovations still not exceeding

12This range is the result from a survey of seven Carbon market expert organizations conducted by the
Ariadne Project in 2022. See Pahle et al. (2022) for more details.
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Figure 5: Simulation Emission Price Change - Results

Notes: The figure displays the average innovator rates in the sample for varying
emission price levels. The simulation for each emission price level is repeated 100
times and the average innovator rate over all simulations is taken.

associated development costs, even with high carbon prices for those firms that did not
innovate in the technology before.

These results confirm the weak version of the Porter Hypothesis stating that the envi-
ronmental policy increases environmentally oriented innovation activity in the case of the
EU-ETS. The simulations show that if the emission price is high enough it builds sub-
stantial incentives for firms to consider taking on the costs of innovating for the benefit of
reducing the cost of the environmental regulation. However, I do not find support for the
strong Porter Hypothesis stating that the environmental regulation additionally increases
firms’ general productivity. This is because I find that mission-reducing innovations at the
same time reduce the developing firm’s productivity while non-emission-reducing innova-
tions are not affected by the policy.

8 Conclusion

Pricing undesired production by-products such as carbon emissions is one of the most
prevalent type of environmental regulation. Most of the political and academic discussions
of its impact focus on the direct additional cost for firms, which tends to reduce their com-
petitiveness and increase consumer prices. This neglects important mechanisms through
which the policy has a dynamic impact on the economy. Carbon prices have the additional
effect of incentivizing firms to develop innovations aiming at reducing their carbon emis-
sions. Existing studies, however, either only focus on parts of this dynamic mechanisms or
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on the introduction of the policy instead of the carbon price itself. I address this gap in
the literature by developing a dynamic structural model of the EU-ETS’s impact on firms’
innovation activities. In the model, firms generate carbon emissions as a by-product of
their production process. Pricing these emissions affects firms’ profit, incentivizing them
to develop innovations that reduce their future emission intensity. The model differenti-
ates between emission-reducing and non-emission-reducing innovations while accounting
for the dynamic nature of those decisions. This general model allows me to evaluate the
impact of carbon price changes on innovation decisions and their impact on emissions and
productivity, providing a substantial contribution to both the academic discussion of the
Porter Hypothesis and the contemporary political discussion on the impact of environmen-
tal policies such as the EU-ETS.

I estimate the model’s parameters for a large sample of German manufacturing firms
using administrative carbon emission data combined with patent application information
and firm’s financial data. The combined data set represents over 93% of German firms that
are regulated by the EU-ETS. My results show that innovations aimed at reducing emis-
sions have a substantial impact on the emission intensity of developing firms. I confirm that
innovations aimed at reducing carbon emissions indeed significantly lower the carbon emis-
sion intensity. This effect is substantial with 13.7% on average. This effect is carried over to
a large extent to subsequent periods by a highly persistent emission intensity development
process. At the same time, these innovations reduce the developing firm’s productivity
by about 1.5%. In contrast, non-emission-reducing innovations increase productivity by
on average about 2.2%. These results imply that on average firms would not engage in
developing emission-reducing innovations if their emissions were not priced through the
EU-ETS and only develop non-emission-reducing innovations. Thus, carbon pricing due
to the EU-ETS has stimulated emission-reducing innovation, as argued by Porter. These
results emphasize that the EU-ETS has a substantial impact on the innovation behavior of
regulated firms. Without pricing firms’ carbon emissions, they would not develop innova-
tions that are explicitly reducing their emission intensity because of their average negative
impact on productivity. However, to quantify the impact the carbon price has on inno-
vation activities, I simulate a counterfactual carbon prices between 10-200€. The results
show that emission-reducing innovation activity reacts strongly to changes in the carbon
price. Initially, emission-reducing innovation activity rises steeply with the emission price.
However, the higher the price rises the less steep is the increase in innovation activity. In
contrast non-emission-reducing innovation activity seems to be unaffected by the emission
price. This implies that a high enough price significantly increases firms’ emission-reducing
innovation activity without reducing other non-emission-reducing innovations.

The results further show that innovation costs for inexperienced developers are sub-
stantially higher than for developers already experienced in innovating in the respective
technology. Development costs for inexperienced developers of emission-reducing innova-
tions are substantially lower than for non-emission-reducing innovations, while maintaining
the development of emission-reducing innovations is more expensive than maintaining non-
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emission-reducing innovations.
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A Appendix

A.1 Note on Data Matching Procedure and Quality

I merge the three data sources (EUTL, Orbis, PATSTAT) using firms names and addresses
present in each data set. The European Union Transfer Log has 2663 industrial installations
from 1465 German firms (account holders). Using Thorsten Doherrs fuzzy name matching
program Search Engine and a manual Creditreform firm identifiers (crefos) search in the
Orbis data for non-matched EUTL account holders, I can match 1331 crefos to 1336 account
holders (2663) installations.13 The Orbis data uses the crefo as a firm identifier which allows
me to merge the two data sets based on crefo-year observations. Table A.1 provides some
merging statistics. It shows that a high share of firms from the EUTL data are successfully
merged to the Orbis data. However, the high number of missing values in the Orbis data
reduces the number of observations in the analysis substantially.

Table A.1: Merge Statistics EUTL-Orbis

Observations
directly matched Firms Observations from

matched firms
Merged 8,978 1,240 21,176

Not merged EUTL 8,443 151 1,960
Orbis 9,137,167 1,268,947 9,131,452

I then merge the combined Orbis-EUTL data to patent information from PATSTAT. In
the first step, applicants of patents need to be matched to firms using names and addresses
in both the Creditreform database and PATSTAT. This match was already completed
in a previous project by Thorsten Doherr and Vanessa Behrens using the program Search
Engine. Because of the large number of observations, they employed a neural net approach
to selecting false positives using absolute meta-information instead of a manual cleaning
approach. With patent applications matched to crefos, I can, in a second step, merge all
available patent applications to the Orbis-EUTL data on a crefo-year basis.

A.2 Note on the Computationally Efficient Implementation of the Like-
lihood Function

The most computationally expensive part of the empirical approach is the estimation of the
development cost distribution parameters θ. The estimation utilizes a numerical maximum
likelihood procedure to retrieve the point estimates. Similar to Peters et al. (2017), the
procedure uses a Nested Fixed Point Algorithm, which is based on a likelihood function of

1360 firms are only matched to pseudo crefos given to airlines. They are dropped from the sample as it
is impossible to find, even with a manual search, any valid firm/crefo in the Orbis data.
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the conditional choice probabilities, i.e.,

L(θ|iEit , iNit , sit) =
∏
i

∏
t

P (iEit |iNit , sit, θ)P (iNit |iNit−1, sit, θ). (28)

I can rewrite the likelihood function as in equation 29 to specifically show the contri-
bution of each observation to the likelihood function’s value, where θE and θN are the
parameter vectors specific to each technology type, respectively. θEs and θNs represent
the parameters for inexperienced and θEm θNm for experienced firms.
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∏
i

∏
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Es)i

E
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N
it (1−iEit−1)...

(29)

The conditional choice probabilities represent the probabilities of a firm choosing to
develop a specific technology in a given year. This is equal to the probability that the dis-
counted marginal expected long-run value of choosing to develop the respective technology
is greater than the associated development cost, i.e.,

P
(
iEit |sit

)
= P

(
δ E
[
V
(
iEit = 1|sit

)
− V

(
iEit = 0|sit

)]
≥ E[CE(θE)]

)
,

P
(
iNit |sit

)
= P

(
δ E
[
V
(
iNit = 1|sit

)
− V

(
iNit = 0|sit

)]
≥ E[CN (θN )]

)
.

(30)

Assuming development costs CE(θE), CN (θN ) to be exponentially distributed, the em-
pirical representations of these probabilities are given by

P
(
iEit |sit

)
= 1− exp

(
δV
(
iEit = 1|sit

)
− δV

(
iEit = 0|sit

)
θE

)
,

P
(
iNit |sit

)
= 1− exp

(
δV
(
iNit = 1|sit

)
− δV

(
iNit = 0|sit

)
θN

)
.

(31)

Calculating these probabilities is the computationally most expensive part of the esti-
mation procedure because retrieving the probabilities relies on calculating the fixed point
of the value function. I approximate the fixed point using value function interactions,
starting from an arbitrary initial value function value to calculate expected value functions
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and a new value for the value function. This new value is then used in the next iteration
instead of the starting value. This procedure is repeated until the value function value used
at the beginning of the iteration does not differ more than a critical value from the newly
calculated value function value. This procedure needs to be repeated for each grid point.
Using a highly efficient programming language in combination with well-optimized code
is essential for the feasibility of the estimation. Interpreted languages like Matlab, Stata,
Python, or R are relatively slow, as each command in the script needs to be interpreted by
the respective program at run-time. Compiled languages such as C++, Fortran, or Julia
translate the code into compiled programs ahead of executing it. Unlike most other com-
piled languages, Julia uses a just-in-time compiler which compiles the user-written code
into machine language during the first execution of the code. It, therefore, combines a
lot of the flexibility of interpreted languages with the speed of compiled ones. In order to
achieve the necessary efficiency, I pre-allocate memory for objects used in the performance-
critical parts in caches and only replace their values of the objects’ elements during the
calculation of the likelihood function values. This avoids slow memory allocations during
execution. Instead of running each iteration of the value function iterations in one function
for all firm types, I calculate each iteration separately for each firm type. Using Julia’s
multi-threading capabilities on a server with 64 CPU cores allows this approach to reduce
run time substantially. I additionally employ Julia’s multi-threading options and highly
optimized linear algebra libraries where they promise performance increases during the
likelihood function calculation.14

14Julia supports Basic Linear Algebra Subprograms (BLAS) and LAPACK routines. When using these
routines inside a multi-threading framework (such as a parallelized loop) it is important to carefully consider
parallel computing options from these packages because a nested multi-threading can lead to performance
bottlenecks.
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A.3 Tables

Table A.2: Patent Application Effect Lag: Employemnt

(1) (2) (3) (4)
Employees Employees Employees employees

Patentt 34.38∗∗∗

(8.692)

Patentt−1 29.87∗∗∗

(8.668)

Patentt−2 16.47∗∗

(7.767)

Patentt−3 8.008
(8.421)

N 88739 64986 51581 43178

Notes: Method: OLS; all models include firm-year fixed effects;
heteroscedasticity robust standard errors in parentheses below
point estimates; * p<0.1, ** p<0.05, *** p< 0.01.

Table A.3: Patent Application Effect Lag: Employemnt

(1) (2) (3) (4)
ln(revenues) ln(revenues) ln(revenues) ln(revenues)

Patentt 0.0190∗∗

(0.00793)

Patentt−1 0.0145∗∗

(0.00659)

Patentt−2 0.0133∗

(0.00715)

Patentt−3 0.0222∗∗

(0.00755)
N 72013 56659 46985 40160

Notes: Method: OLS; all models include firm-year fixed effects; het-
eroscedasticity robust standard errors in parentheses below point esti-
mates; * p<0.1, ** p<0.05, *** p< 0.01.
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Table A.4: Patent Application Effect Lag: Employemnt

(1) (2) (3) (4)
ln(emission int) ln(emission int) ln(emission int) ln(emission int)

Em. red. patt -0.197∗

(0.104)

Em. red. patt−1 -0.143
(0.106)

Em. red. patt−2 0.0220
(0.0663)

Em. red. patt−3 0.0599
(0.158)

N 3354 3107 2933 2769

Notes: Method: OLS; all models include firm-year fixed effects; heteroscedasticity robust stan-
dard errors in parentheses below point estimates; * p<0.1, ** p<0.05, *** p< 0.01.
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